Classifications of Symmetric Normal Form Games

Nick Ham

advisor: Des FitzGerald

University of Tasmania

November 25, 2013

Example (Two-Player Game)

$$\begin{array}{ccc}
c & d \\
a & 3,3 & 1,4 \\
b & 4,1 & 2,2
\end{array}$$

How is such a game played?

What does a normal form game consist of?

Notation

٩	$N = \{1, 2\};$	(set of players)
٩	$A_1 = \{a, b\}, A_2 = \{c, d\};$	(strategy sets)
٩	$A = A_1 \times A_2 = \{(a, c), (a, d), (b, c), (b, c), (b, c), (b, c), (b, c), (c, c), (c,$	d)}; (strategy profiles)
٩	$u_1, u_2: \mathcal{A} ightarrow \mathbb{R};$	(payoff/utility functions)
٩	$u_2(b,c)=1.$	

Definition

A normal form game Γ consists of a (finite) set N of at least two players, and for each player $i \in N$:

- A non-empty (finite) set of **strategies** A_i; and
- A payoff/utility function u_i : A → ℝ where A = ×_{i∈N}A_i is the set of strategy profiles.

Example (Three-Player Game)

•
$$N = \{1, 2, 3\};$$

• $A_1 = \{a, b\}, A_2 = \{c, d\}, A_3 = \{e, f\};$
• $A = \{(a, c, e), (a, c, f), (a, d, e), (a, d, f), (b, c, e), (b, c, f), (b, d, e), (b, d, f)\};$
• $u_3(b, d, e) = 5.$

Player Permutations S_N Acting on Strategy Profiles A

Suppose each player has the same strategy set.

Eg.
$$A_1 = A_2 = A_3 = \{a, b\}.$$

Let $\pi \in S_N$ be a permutation of the players.

Proposition

The player permutations act on the left of strategy profiles via

$$\pi(s_1,...,s_n) = (s_{\pi^{-1}(1)},...,s_{\pi^{-1}(n)}).$$

Example

Take
$$\pi = (123) \in S_3$$
 and $(s_1, s_2, s_3) \in A$.

$$\pi(s_1, s_2, s_3) = (s_{\pi^{-1}(1)}, s_{\pi^{-1}(2)}, s_{\pi^{-1}(3)}) = (s_3, s_1, s_2)$$

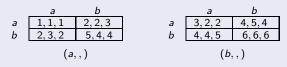
Eg. $\pi(a, b, a) = (a, a, b)$

Definition (von Neumann)

 $\pi \in S_N$ is an **invariant** of a game Γ if for each player $i \in N$ and strategy profile $s \in A$, $u_i(s) = u_{\pi(i)}(\pi(s))$.

Invariants give us a notion of players being indifferent between current positions and an alternative arrangement of positions.

Example



• (123) and (23) are invariants of $\Gamma;$

Eg. Let $\pi = (123)$, then $u_2(a, b, a) = u_{\pi(2)}(\pi(a, b, a)) = u_3(a, a, b) = 3$. • $\langle (123), (23) \rangle = S_3$ (invariants of Γ).

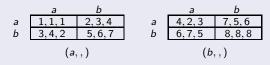
Label-Dependent Notions of Symmetry

Definition

Γis:

- fully symmetric (vNM) if it is invariant under S_N ; and
- **standard symmetric** (Stein?) if it is invariant under a transitive subgroup of *S*_{*N*}.

Example (Standard Symmetric Three-Player Game)



- Γ is invariant under (123) and not invariant under (23);
- $\langle (123) \rangle = \{e, (123), (132)\}$ is a transitive subgroup of S_3 ;

Note: Must have $u_i(a, a, a) = u_j(a, a, a)$ for all $i, j \in N$ etc.

Questions

- What if players have different strategy sets?
- Have we fully captured fairness? No

Example (Matching Pennies)

$$\begin{array}{c|ccc} H & T \\ \hline H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

Game Bijections

Definition (Nash)

A **bijection** from Γ to itself consists of a player permutation $\pi \in S_N$ and for each player $i \in N$, a strategy set bijection $\tau_i : A_i \to A_{\pi(i)}$. **Notation:** Bij(Γ) denotes the game bijections from Γ to itself.

Example

$$g = ((123); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix})$$

Note: $\operatorname{Bij}(\Gamma) \cong (S_m \operatorname{Wr} S_n).$

Proposition

Game bijections act on the left of players and strategy profiles.

Example

$$g(2) = 3$$
 and $g(b, d, e) = (a, c, f)$

Game Bijections

Definition

Let $G \leq \text{Bij}(\Gamma)$. The **stabiliser of player** $i \in N$ is the subgroup $G_i = \{g \in G : g(i) = i\} \leq G$.

Properties (Stein)

We say that G is:

- player transitive if for each i, j ∈ N there exists g ∈ G such that g(i) = j;
- player n-transitive if for each π ∈ S_N there exists g ∈ G such that g(i) = π(i) for all i ∈ N; and
- strategy trivial if for each $g \in G_i$, $g(s_i) = s_i$ for all $s_i \in A_i$.

Theorem (Stein)

Strategy trivial subgroups act on strategy profiles equivalently to permutations for some relabelling of the strategies.

Automorphism Group

Definition (Nash)

An **automorphism** of Γ is an invariant bijection $g \in \text{Bij}(\Gamma)$.

$$\text{le. } u_i(s) = u_{g(i)}(g(s)) \text{ for all } i \in N, \ s \in A.$$

The automorphisms of Γ form a group which we denote as Aut(Γ).

Example (Matching Pennies)

$$\begin{array}{c|ccc} H & T \\ \hline H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

$$\mathsf{Aut}(\mathsf{\Gamma}) = \{ \left(e; \left(\begin{smallmatrix} H & T \\ H & T \end{smallmatrix} \right), \left(\begin{smallmatrix} H & T \\ H & T \end{smallmatrix} \right) \right), \left(e; \left(\begin{smallmatrix} H & T \\ T & H \end{smallmatrix} \right), \left(\begin{smallmatrix} H & T \\ H & T \end{smallmatrix} \right), \left(e; \left(\begin{smallmatrix} H & T \\ T & H \end{smallmatrix} \right), \left(\begin{smallmatrix} H & T \\ T & H \end{smallmatrix} \right) \right), \left((12); \left(\begin{smallmatrix} H & T \\ T & H \end{smallmatrix} \right), \left(\begin{smallmatrix} H & T \\ H & T \end{smallmatrix} \right) \right) \}$$

Aut(Γ) is player *n*-transitive, is not strategy trivial and contains no proper transitive subgroups.

Label-Independent Notions of Symmetry

Corollary (Stein)

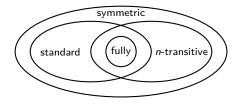
The following conditions are equivalent:

- there exists standard symmetric Γ' such that $\Gamma'\cong\Gamma;$
- Aut(Γ) has a player transitive and strategy trivial subgroup.

Definition

Γis:

- symmetric if $Aut(\Gamma)$ is player transitive; and
- *n*-transitive if $Aut(\Gamma)$ is player *n*-transitive.



Definition

Let $G \subseteq \text{Bij}(\Gamma)$. We construct the **parameterised game** $\Gamma(G)$ of G by assigning a parameter to each orbit in $(N \times A)/\langle G \rangle$.

Example

$$g = ((12); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} c & d \\ a & b \end{pmatrix})$$
 requires that we have,

$$u_1(a,c) = u_2(a,c) = \alpha \qquad u_1(a,d) = u_2(b,c) = \gamma u_1(b,c) = u_2(a,d) = \beta \qquad u_1(b,d) = u_2(b,d) = \delta$$

	С	d
а	α, α	γ, eta
b	β, γ	δ, δ

Note: $\langle G \rangle$ can be a proper subgroup of Aut($\Gamma(G)$).

Parameterised Games

Example (*n*-Transitive Standard Non-Fully Symmetric Game)

$$\begin{array}{c|c} e & f & e & f \\ \hline \alpha, \alpha, \alpha & \beta, \gamma, \delta \\ d & \gamma, \delta, \beta & \delta, \gamma, \beta \\ \hline (a,,) & (b,,) \end{array}$$

 $G = \{ ((123); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix}), ((12); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ b & a \end{pmatrix}, \begin{pmatrix} e & f \\ f & e \end{pmatrix}) \}$

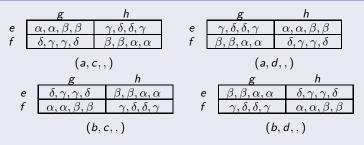
• $\langle G \rangle$ is player *n*-transitive;

• $\langle ((123); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix}) \rangle$ is transitive and strategy trivial;

• $((12); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} c & d \\ a & b \end{pmatrix}, \begin{pmatrix} e & f \\ e & f \end{pmatrix}) \notin \operatorname{Aut}(\Gamma(G)).$

Parameterised Games

Example (Only-Transitive Non-Standard Symmetric Game)

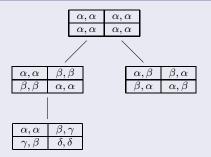


$$G = \{ \left((12) \circ (34); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ a & b \end{pmatrix}, \begin{pmatrix} e & f \\ h & g \end{pmatrix}, \begin{pmatrix} g & h \\ e & f \end{pmatrix} \right), \\ \left((13) \circ (24); \begin{pmatrix} a & b \\ e & e \end{pmatrix}, \begin{pmatrix} c & d \\ h & g \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix}, \begin{pmatrix} g & h \\ c & d \end{pmatrix} \right), \\ \left((14) \circ (23); \begin{pmatrix} a & b \\ h & g \end{pmatrix}, \begin{pmatrix} c & d \\ f & e \end{pmatrix}, \begin{pmatrix} e & f \\ c & d \end{pmatrix}, \begin{pmatrix} g & h \\ c & d \end{pmatrix} \right) \}$$

Definition

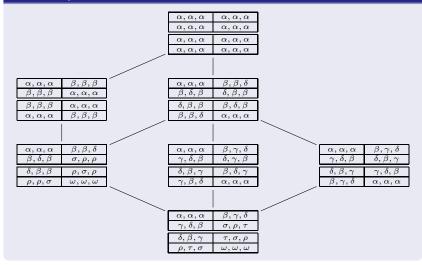
Define \leq on parameterised games as follows: $\Gamma(G) \leq \Gamma(G')$ when given a set of parameters for $\Gamma(G')$ there exists a set of parameters for $\Gamma(G)$ such that $\Gamma(G) \cong \Gamma(G')$.

Example (Symmetric 2-Player 2-Strategy Games up to Isomorphism)



Partially Ordering Parameterised Games

Example (Symmetric 3-Player 2-Strategy Games up to Isomorphism)



Questions?